Past Year JEE Questions

Questions

Quetion: 01

If $(\overrightarrow{a} + 3\overrightarrow{b})$ is perpendicular to $(7\overrightarrow{a} - 5\overrightarrow{b})$ and $(\overrightarrow{a} - 4\overrightarrow{b})$ is perpendicular to $(7\overrightarrow{a} - 2\overrightarrow{b})$, then the angle between \overrightarrow{a} and \overrightarrow{b} (in degrees) is ______.

Solutions

Solution: 01

Answer

Correct Answer is 60

Explanation

$$\left(\overrightarrow{a} + 3\overrightarrow{b}\right) \perp \left(7\overrightarrow{a} - 5\overrightarrow{b}\right)$$

$$\therefore \left(\overrightarrow{a} + 3\overrightarrow{b}\right) \cdot \left(7\overrightarrow{a} - 5\overrightarrow{b}\right) = 0$$

$$\Rightarrow 7\left|\overrightarrow{a}\right|^2 - 15\left|\overrightarrow{b}\right|^2 + 16\overrightarrow{a} \cdot \overrightarrow{b} = 0 \dots (1)$$

Also,
$$(\overrightarrow{a} - 4\overrightarrow{b})$$
. $(7\overrightarrow{a} - 2\overrightarrow{b}) = 0$

$$\Rightarrow 7 \left| \overrightarrow{a} \right|^2 + 8 \left| \overrightarrow{b} \right|^2 - 30 \overrightarrow{a} \cdot \overrightarrow{b} = 0 \dots (2)$$

Equation (1) × 30

$$210\left|\vec{a}\right|^2 - 450\left|\vec{b}\right|^2 + 480\vec{a} \cdot \vec{b} = 0 \dots (3)$$

Equation (2) × 16

$$112 \left| \overrightarrow{a} \right|^2 + 128 \left| \overrightarrow{b} \right|^2 - 480 \overrightarrow{a} \cdot \overrightarrow{b} = 0 \dots (4)$$

from (3) & (4)

$$332\left|\overrightarrow{a}\right|^2 = 332\left|\overrightarrow{b}\right|^2$$

$$\Rightarrow \left|\overrightarrow{a}\right|^2 = \left|\overrightarrow{b}\right|^2$$

$$\Rightarrow \left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$$

From equation (2),

$$15\left|\overrightarrow{a}\right| = 30\overrightarrow{a}.\overrightarrow{b}$$

$$\Rightarrow 15 \left| \overrightarrow{a} \right|^2 = 30 \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cos \theta$$

$$\cos\theta = \frac{15}{30} = \frac{1}{2}$$

$$\therefore \theta = 60^{\circ}$$